34,595 research outputs found

    Exchange coupling between magnetic layers across non-magnetic superlattices

    Full text link
    The oscillation periods of the interlayer exchange coupling are investigated when two magnetic layers are separated by a metallic superlattice of two distinct non-magnetic materials. In spite of the conventional behaviour of the coupling as a function of the spacer thickness, new periods arise when the coupling is looked upon as a function of the number of cells of the superlattice. The new periodicity results from the deformation of the corresponding Fermi surface, which is explicitly related to a few controllable parameters, allowing the oscillation periods to be tuned.Comment: 13 pages; 5 figures; To appear in J. Phys.: Cond. Matte

    Modelling of epitaxial film growth with a Ehrlich-Schwoebel barrier dependent on the step height

    Full text link
    The formation of mounded surfaces in epitaxial growth is attributed to the presence of barriers against interlayer diffusion in the terrace edges, known as Ehrlich-Schwoebel (ES) barriers. We investigate a model for epitaxial growth using a ES barrier explicitly dependent on the step height. Our model has an intrinsic topological step barrier even in the absence of an explicit ES barrier. We show that mounded morphologies can be obtained even for a small barrier while a self-affine growth, consistent with the Villain-Lai-Das Sarma equation, is observed in absence of an explicit step barrier. The mounded surfaces are described by a super-roughness dynamical scaling characterized by locally smooth (faceted) surfaces and a global roughness exponent α>1\alpha>1. The thin film limit is featured by surfaces with self-assembled three-dimensional structures having an aspect ratio (height/width) that may increase or decrease with temperature depending on the strength of step barrier.Comment: To appear in J. Phys. Cond. Matter; 3 movies as supplementary materia

    Fundamental Oscillation Periods of the Interlayer Exchange Coupling beyond the RKKY Approximation

    Full text link
    A general method for obtaining the oscillation periods of the interlayer exchange coupling is presented. It is shown that it is possible for the coupling to oscillate with additional periods beyond the ones predicted by the RKKY theory. The relation between the oscillation periods and the spacer Fermi surface is clarified, showing that non-RKKY periods do not bear a direct correspondence with the Fermi surface. The interesting case of a FCC(110) structure is investigated, unmistakably proving the existence and relevance of non-RKKY oscillations. The general conditions for the occurrence of non-RKKY oscillations are also presented.Comment: 34 pages, 10 figures ; to appear in J. Phys.: Condens. Mat
    • …
    corecore